M463 Homework 18

Enrique Areyan
 July 22, 2013

For random variables X and Y with joint density function

$$
f(x, y)=6 e^{-2 x-3 y} \quad(x, y>0)
$$

and $f(x, y)=0$ otherwise, find:
a) $P(X \leq x, Y \leq y)$;

Solution:

$$
\begin{gathered}
F(x, y)=\int_{0}^{y} \int_{0}^{x} f(x, y) d x d y=\int_{0}^{y} \int_{0}^{x} 6 e^{-2 x-3 y} d x d y=6 \int_{0}^{y} e^{-3 y} d y \int_{0}^{x} e^{-2 x} d x=6\left(\left[-\frac{e^{-3 y}}{3}\right]_{0}^{y}\left[-\frac{e^{-2 x}}{2}\right]_{0}^{x}\right) \\
=6\left(-\frac{e^{-3 y}}{3}+\frac{1}{3}\right)\left(-\frac{e^{-2 x}}{2}+\frac{1}{2}\right)=\left(1-e^{-3 y}\right)\left(1-e^{-2 x}\right)
\end{gathered}
$$

This could also be answered by noticing that these are independent variables (see part d)), and then multiply the corresponding cdfs of the exponential distributions:

$$
P(X \leq x, Y \leq y)=F_{X}(x) F_{Y}(y)=\left(1-e^{-3 y}\right)\left(1-e^{-2 x}\right)
$$

b) $f_{X}(x)$;

Solution:

$$
f_{X}(x)=\int_{0}^{\infty} f(x, y) d y=\int_{0}^{\infty} 6 e^{-2 x-3 y} d y=6 e^{-2 x}\left[-\frac{e^{-3 y}}{3}\right]_{0}^{\infty}=6 e^{-2 x}\left(0+\frac{1}{3}\right)=2 e^{-2 x}
$$

c) $F_{Y}(y)$.

Solution:

$$
f_{Y}(y)=\int_{0}^{\infty} f(x, y) d x=\int_{0}^{\infty} 6 e^{-2 x-3 y} d y=6 e^{-3 y}\left[-\frac{e^{-2 x}}{2}\right]_{0}^{\infty}=6 e^{-3 y}\left(0+\frac{1}{2}\right)=3 e^{-3 x}
$$

d) Are X and Y independent? Give a reason for your answer.

Solution: Yes, they are independent since for every x, y :

$$
f(x, y)=6 e^{-2 x-3 y}=2 e^{-2 x} \cdot 3 e^{-3 x}=f_{X}(x) f_{Y}(y)
$$

